The easiest way to hobble a fast CPU is to pair it with slow storage. While your processor can handle billions of cycles a second, it often spends a lot of time waiting for your drive to feed it data. Hard drives are particularly sluggish because they have platters that have to spin up and a read-right arm that has to find its way physically to the sectors you're currently seeking. To get optimal performance you need a good solid state drive (SSD).
If you already know all about drive types and want specific recommendations, check out our Best SSDs page. And if you're after an external drive or SSD for portable storage or back up, be sure to check our Best External Drives page. But if you don't have a PhD in SSD, here are a few things you need to consider when shopping.
If you’re going to be shopping for an SSD deal, you’ll want to check out our feature: How to Tell an SSD Deal From a Solid-State Dud. In recent months, Intel's 660p QLC SSD has consistently seen some of the best deals, with pricing often falling well below 10 cents per gigabyte. And if you keep an eye on our Best SSD and Storage Deals page, you might snag a sweet price on an older (but still plenty fast) SATA SSD. Also, keep an eye out for deals on higher-capacity drives, like 1 or even 2TB models. That’s where there’s the most potential for great discounts.
As drives like this and Intel's 660p start to undercut mainstream drives on the old SATA interface, while delivering much more speed, this could be he beginning of the end of our old friend, Serial ATA. And those existing SATA drive will have to continue falling in price as well, in order to at least compete on price, since they can't hope to keep up with NVMe drives on performance.
As drives like this and Intel's 660p start to undercut mainstream drives on the old SATA interface, while delivering much more speed, this could be he beginning of the end of our old friend, Serial ATA. And those existing SATA drive will have to continue falling in price as well, in order to at least compete on price, since they can't hope to keep up with NVMe drives on performance.
How much can you spend?
Most consumer drives range from 120GB to 2TB. While 120GB drives are the cheapest, they aren't roomy enough to hold a lot of software and are usually slower than their higher-capacity counterparts. The delta between 250GB and 500GB drives can be slightly more, but 500GB is the sweet spot between price, performance and capacity for most users--particularly if you don't have the budget for a 1TB model.
There are also some drives (primarily from Samsung) with capacities above 2TB. But they’re typically expensive in the extreme, so they’re really only worthwhile for professional users who need space and speed and aren’t averse to paying for it.
What kind of SSD does your computer support?
Solid-state drives these days come in several different form factors and operate across several possible hardware and software connections. What kind of drive you need depends on what device you have (or are intending on buying). If you own a recent gaming desktop or are building a PC with a recent mid-to-high-end motherboard, your system may be able to incorporate most (or all) modern drive types.
Alternatively, modern slim laptops and convertibles are increasingly shifting solely to the gum-stick-shaped M.2 form factor, with no space for a traditional 2.5-inch laptop-style drive. And in some cases, laptop makers are soldering the storage directly to the board, so you can’t upgrade at all. So you’ll definitely want to consult your device manual or check Crucial's Advisor Tool to sort out what your options are before buying.
Which form factor do you need?
SSDs come in three main form factors, plus one uncommon outlier.
- 2.5-inch Serial ATA (SATA): The most common type, these drives mimic the shape of traditional laptop hard drives and connect over the same SATA cables and interface that any moderately experienced upgrader should be familiar with. If your laptop or desktop has a 2.5-inch hard drive bay and a spare SATA connector, these drives should be drop-in-compatible (though you may need a bay adapter if installing in a desktop with only larger, 3.5-inch hard drive bays free).
- SSD Add-in Card (AIC): These drives have the potential to be much faster than other drives, as they operate over the PCI Express bus, rather than SATA, which was designed well over a decade ago to handle spinning hard drives. AIC drives plug into the slots on a motherboard that are more commonly used for graphics cards or RAID controllers. Of course, that means they’re only an option for desktops, and you’ll need an empty PCIe x4 or x16 slot to install them.If your desktop is compact and you already have a graphics card installed, you may be out of luck. But if you do have room in your modern desktop and a spare slot, these drives can be among the fastest available (take the Intel Optane 900p, for example), due in large part to their extra surface area, allowing for better cooling. Moving data at extreme speeds generates a fair bit of heat.
- M.2 SSDs: About the shape of a stick of RAM but much smaller, M.2 drives have become the standard for slim laptops, but you'll also find them on many desktop motherboards. Some boards even have two or more M.2 slots, so you can run the drives in RAID.While most M.2 drives are 22mm wide and 80mm long, there are some that are shorter or longer. You can tell by the four or five-digit number in their names, with the first two digits representing width and the others showing length. The most common size is labeled M.2 Type-2280. Though laptops will only work with one size, many desktop motherboards have anchor points for longer and shorter drives.The largest M.2 drives are 1 to 2TB. So, if you have a generous budget and need a ton of storage space, you should consider other form factors.
- U.2 SSDs: At first glance, these 2.5-inch components look like traditional SATA hard drives. However, they use a different connector and send data via the speedy PCIe interface, and they're typically thicker than 2.5-inch hard drives and SSDs. U.2 drives tend to be more expensive and higher-capacity than regular M.2 drives. Servers that have lots of open drive bays can benefit from this form factor.
Do you want a drive with a SATA or PCIe interface?
Strap in, because this bit is more complicated than it should be. As noted earlier, 2.5-inch SSDs run on the Serial ATA (SATA) interface, which was designed for hard drives (and launched way back in 2000), while add-in-card drives work over the faster PCI Express bus, which has more bandwidth for things like graphics cards.
M.2 drives can work either over SATA or PCI Express, depending on the drive. And the fastest M.2 drives (including Samsung’s 970 drives and Intel’s 760p) also support NVMe, a protocol that was designed specifically for fast modern storage. The tricky bit (OK, another tricky bit) is that an M.2 drive could be SATA-based, PCIe-based without NVMe support, or PCIe-based with NVMe support. That said, most fast M.2 SSDs launched in the last couple of years support NVMe
Both M.2 drives and the corresponding M.2 connectors on motherboards look very similar, regardless of what they support. So be sure to double-check the manual for your motherboard, laptop, or convertible, as well as what a given drive supports, before buying.
If your daily tasks consist of web browsing, office applications, or even gaming, most NVMe SSDs aren’t going to be noticeably faster than less expensive SATA models. If your daily tasks consist of heavier work, like large file transfers, videos or high-end photo editing, transcoding, or compression/decompression, then you might consider stepping up to an NVMe SSD. These SSDs provide up to five times more bandwidth than SATA models, which boosts performance in heavier productivity applications.
Also, some NVMe drives (like Intel's SSD 660p) are edging below the price of many SATA drives. So if your device supports NVMe and you find a good deal on a drive, you may want to consider NVMe as an option even if you don't have a strong need for the extra speed. Keep an eye on our Best Tech Deals page for a curated up-to-date list of the best deals we can find in storage, as well as other components and related products.
Also, some NVMe drives (like Intel's SSD 660p) are edging below the price of many SATA drives. So if your device supports NVMe and you find a good deal on a drive, you may want to consider NVMe as an option even if you don't have a strong need for the extra speed. Keep an eye on our Best Tech Deals page for a curated up-to-date list of the best deals we can find in storage, as well as other components and related products.
What capacity do you need?
- 128GB Class: Stay away. These low-capacity drives tend to have slower performance, because of their minimal number of memory modules. Also, after you put Windows and a couple of games on it, you'll be running out of space.
- 250GB Class: These drives are much cheaper than their larger siblings, but they're still quite cramped, particularly if you use your PC to house your operating system, PC games, and possibly a large media library. If there’s wiggle room in your budget, stepping up at least one capacity tier to a 500GB-class drive is advisable.
- 500GB Class: Drives at this capacity level occupy a sweet spot between price and roominess, although 1TB drives are becoming increasingly appealing.
- 1TB Class: Unless you have massive media or game libraries, a 1TB drive should give you enough space for your operating system and primary programs, with plenty of room for future media collections and software.
- 2TB Class: If you work with large media files, or just have a large game library that you want to be able to access on the quick, a 2TB drive could be worth the high premium you pay for it.
- 4TB Class: You have to really need this much space on an SSD to splurge on one of these. As of this writing, Samsung was the only company offering consumer-focused 4TB models, in both the 860 EVO and pricier 860 Pro models.
If you’re a desktop user, or you have a gaming laptop with multiple drives and you want lots of capacity, you’re much better off opting for a pair of smaller SSDs, which will generally save you hundreds of dollars while still offering up roughly the same storage space and speed. Until pricing drops and we see more competition, 4TB drives will be relegated to professionals and enthusiasts with very deep pockets.
What about power consumption?
If you’re a desktop user after the best possible performance, then you probably don't care how much juice you're using. But for laptop and convertible tablet owners, drive efficiency is more important than speed—especially if you want all-day battery life.
Choosing an extremely efficient drive like Samsung’s 850 EVO over a faster-but-power-hungry NVMe drive (like, say, the Samsung 960 EVO) can gain you 90 minutes or more of extra unplugged run time. And higher-capacity models can draw more power than less-spacious drives, simply because there are more NAND packages on bigger drives to write your data to.
While the above advice is true in a general sense, some drives can buck trends, and technology is always advancing and changing the landscape. If battery life is key to your drive-buying considerations, be sure to consult the battery testing we do on every SSD we test.
What controller should your SSD have?
Think of the controller as the processor of your drive. It routes your reads and writes and performs other key drive performance and maintenance tasks. It can be interesting to dive deep into specific controller types and specs. But for most people, it’s enough to know that, much like PCs, more cores are better for higher-performing, higher-capacity drives.
While the controller obviously plays a big role in performance, unless you like to get into the minute details of how specific drives compare against each other, it’s better to check out our reviews to see how a drive performs overall, rather than focusing too much on the controller.
Which type of storage memory (NAND flash) do you need?
When shopping for an SSD for general computing use in a desktop or laptop, you don't expressly need to pay attention to the type of storage that’s inside the drive. In fact, with most options on the market these days, you don’t have much a choice, anyway. But if you’re curious about what’s in those flash packages inside your drive, we’ll walk you through various types below. Some of them are far less common than they used to be, and some are becoming the de facto standard.